Single-walled carbon nanotubes are a new class of ion channel blockers.
نویسندگان
چکیده
Here we identify a novel class of biological membrane ion channel blockers called single-walled carbon nanotubes (SWNTs). SWNTs with diameter distributions peaked at approximately 0.9 and 1.3 nm, C60 fullerenes, multi wall nanotubes (MWNTs), and hyperfullerenes (nano-"onions") were synthesized by several techniques and applied to diverse channel types heterologously expressed in mammalian cells. External as-fabricated and purified SWNTs blocked K+ channel subunits in a dose-dependent manner. Blockage was dependent on the shape and dimensions of the nanoparticles used and did not require any electrochemical interaction. SWNTs were more effective than the spherical fullerenes and, for both, diameter was the determining factor. These findings postulate new uses for SWNTs in biological applications and provide unexpected insights into the current view of mechanisms governing the interaction of ion channels with blocking molecules.
منابع مشابه
Single-Walled Carbon Nanotubes: Mimics of Biological Ion Channels
Here we report on the ion conductance through individual, small diameter single-walled carbon nanotubes. We find that they are mimics of ion channels found in natural systems. We explore the factors governing the ion selectivity and permeation through single-walled carbon nanotubes by considering an electrostatic mechanism built around a simplified version of the Gouy-Chapman theory. We find th...
متن کاملMulti-walled Carbon Nanotube-CO-NH(CH2)2NH-SO3H: A New Adsorbent for Removal of Methylene Blue from Aqueous Media
In this study, Multi-walled carbon nanotube-CO-NH(CH2)2NH-SO3H was prepared through the functionalization of commercial multi-walled carbon nanotubes in three steps and then it was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Transmission Electron Microscopy (TEM). In addition, the adsorption of Methylene Blue was investigated by using these nanotubes. In order to remo...
متن کاملOn the Buckling Response of Axially Pressurized Nanotubes Based on a Novel Nonlocal Beam Theory
In the present study, the buckling analysis of single-walled carbon nanotubes (SWCNT) on the basis of a new refined beam theory is analyzed. The SWCNT is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new proposed beam theory has only one unknown variable which leads to one equation similar to Euler beam theory and is also free from any shear ...
متن کاملDetection of single ion channel activity with carbon nanotubes
Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion chan...
متن کاملRadius Dependence of Hydrogen Storage Inside Single Walled Carbon Nanotubes in an Array
In this study, we have investigated radius dependence of hydrogen storage within armchair (n,n) single walled carbon nanotubes (SWCNT) in a square arrays. To this aim, we have employed equilibrium molecular dynamics (MD) simulation. Our simulations results reveal that radius of carbon nanotubes are an important and influent factor in hydrogen distribution inside carbon nanotubes and consequentl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 50 شماره
صفحات -
تاریخ انتشار 2003